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Large Deviation Techniques Applied to Systems with
Long-Range Interactions
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We discuss a method to solve models with long-range interactions in the microca-
nonical and canonical ensemble. The method closely follows the one introduced
by R.S. Ellis, Physica D 133:106 (1999), which uses large deviation techniques.
We show how it can be adapted to obtain the solution of a large class of sim-
ple models, which can show ensemble inequivalence. The model Hamiltonian can
have both discrete (Ising, Potts) and continuous (HMF, Free Electron Laser) state
variables. This latter extension gives access to the comparison with dynamics and
to the study of non-equilibrium effects. We treat both infinite range and slowly
decreasing interactions and, in particular, we present the solution of the α-Ising
model in one-dimension with 0 � α <1.

KEY WORDS: long-range interactions; large deviation techniques; mean-field
limit.

A system with long-range interactions is characterized by an interparticle
potential V (r) which decreases at large distances r slower than a power
r−α with α<d, d being the dimension of the embedding space.(1) Classical
examples are self-gravitating(2) and Coulomb(3) systems, vortices in two-
dimensional fluid mechanics,(4) wave-particles interaction(5,6) and trapped
charged particles.(7) The behavior of such systems is interesting both from
the dynamical point of view, because they display peculiar quasi-stationary
states that are related to the underlying Vlasov equations,(8) and from the
static point of view, because equilibrium statistical mechanics shows new
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types of phase transitions and cases of ensemble inequivalence.(9) In this
paper, we will restrict ourselves to the second aspect.

In long-range interacting systems, essentially all the particles contrib-
ute to the local field: the fluctuations around the mean value are small
because of the law of large numbers. This explains qualitatively why the
mean-field scaling, which amounts to let the number of particles go to
infinity at fixed volume,(10,11) is usually extremely good. However, let us
remind that for long-range interacting systems, microcanonical and canon-
ical ensembles are not necessarily equivalent in the mean-field limit.(12–14)

Moreover, because of the non additivity of the energy, the usual con-
struction of the canonical ensemble cannot be applied. This is the reason
why the microcanonical ensemble is considered by some authors(2,15) as
the only “physically motivated” one. Hence, it is extremely important to
develop rigorous techniques to solve non-trivial physical models in the mi-
crocanonical ensemble. One finds in books the solution for the perfect gas,
but generalizations to interacting particle systems are difficult.

The goal of this paper is to advocate the use of large deviation
techniques as a tool to explicitly derive microcanonical and canonical
equilibrium solutions for a wide class of models. As a first step in this
direction, we will discuss here a general solution method to treat in full
detail mean-field models without short distance singularity. Large devi-
ation techniques(16,17) are nowadays widely used. For example, Michel
and Robert,(18) using these techniques, rigorously derived the statistical
mechanics of the two-dimensional Euler equations. The method was later
used by Ellis et al.(19) to study other two-dimensional geophysical fluids.
The statistical mechanics of some models with discrete variables has been
recently obtained using large deviation theory.(9,20,21) Besides presenting
the solution method, we will show in this paper how it can be applied to
models whose Hamiltonian depends on continuous state variables, like the
so-called Hamiltonian Mean-Field (HMF) model(22,23); the interest being
here to obtain solutions in the microcanonical ensemble of models which
display a Hamiltonian dynamics, opening the possibility of studying also
non-equilibrium effects.

We will first briefly introduce in Section 1 the large deviation tech-
nique. In Section 2 we will recall the different steps of the mathematical
framework introduced in ref. 19, necessary for a systematic application to
long-range interacting systems: we will use the infinite range Potts model
as a simple example. In a first instance, we will then treat infinite range
models with continuous variables. We will present in Section 3.1 the solu-
tion of the HMF model(23) in the microcanonical ensemble and, in the
following Section 3.2, we will consider the Colson–Bonifacio model of
Free Electron Lasers (FEL),(24) as an example of relevance for physical
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applications. In Section 4, we will show that these techniques can be
applied also to cases where the interaction is not infinite range but dis-
tance dependent; the solution of the so-called α-Ising model,(25) in one
dimension with 0 � α < 1, will be presented in full detail, allowing us to
discuss also the role of boundary conditions. Finally, Section 5 will be
devoted to conclusions and perspectives.

1. LARGE DEVIATION THEORY

We will present in this section the main ideas behind large deviation
techniques, with an emphasis to applications. For a more rigorous mathe-
matical treatment, we direct the reader to refs. 16 and 17.

1.1. The Large Deviation Principle

Let us consider the sample mean of N independent real random vari-
ables Xk with the same distribution and zero average

SN = 1
N

N∑

k=1

Xk. (1)

The law of large numbers states that SN tends toward the average x =
〈Xk〉, namely 0, when N tends toward infinity. Moreover, if Xk has a finite
variance, since all hypotheses of the central limit theorem are fulfilled,
the probability distribution P(

√
NSN ∈ [x, x + dx]) converges towards a

Gaussian, hence the fluctuations of SN are of order 1/
√

N . Typical ques-
tions of the large deviation theory are: What is the behavior of the tails
of the distribution? What is the probability of a fluctuation of order one
of SN , i.e. what is the value of P(SN ∈ [x, x +dx])?

Let us be more specific by discussing the usual example of the coin
toss. We attribute to heads and tails of a coin the values Xk = +1 and
Xk =−1, respectively. The sum SN can take (N +1) distinct x-values in the
interval [−1,1]. For such values, using simple combinatorial analysis, one
easily derives the probability distribution

P(SN =x)= N !(
(1+x)N

2

)
!
(

(1−x)N

2

)
! 2N

, (2)

which, using the Stirling’s formula, can be approximated in the large N

limit as
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ln P(SN =x) ∼ −N

(
(1+x)

2
ln(1+x)+ (1−x)

2
ln(1−x)

)
≡−NI (x),

(3)

which defines the function I (x). More precisely, one can prove that for any
interval ]x1, x2[⊂ [−1,1],

lim
N→∞

− 1
N

ln P(x ∈]x1, x2[)= max
x∈]x1, x2[

I (x). (4)

In the language of large deviation theory, one states that SN fulfills a large
deviation principle, characterized by the rate function I (x). If one interprets
the coin toss experiment as a microscopic realization of a chain of N non-
interacting Ising spins, it is straightforward to prove that, in the statistical
mechanics vocabulary, I (x) corresponds to the negative of the Boltzmann
entropy (divided by the Boltzmann constant) of a state characterized by a
fraction x of up-spins. This is a first simple example of the large deviation
principle, and the main purpose of this paper is to present other examples
of its use for more complicated and physically relevant systems.

1.2. Cramér’s Theorem

Cramér’s theorem(17) allows one to derive the probability distribution
P(SN ∈ [x, x +dx]) in the large N -limit, providing also a method to com-
pute the rate function I (x). The theorem is formulated for multi-dimen-
sional and identically distributed random variables Xk ∈ R

d , d being the
dimension of the space of the variables. We will formulate the theorem in
an informal way, without emphasizing mathematical technicalities.

Let us define the function �(λ) as

�(λ)=〈eλ·X〉, (5)

where λ∈R
d , “·” is the usual scalar product and 〈 〉 is the average over

the common probability distribution of the variables Xk. Cramér’s theo-
rem states that, if �(λ) < ∞, ∀λ ∈ R

d , then the sample mean SN satisfies
the large deviation principle

ln P(SN ∈ [x, x +dx])∼−NI (x), (6)

with rate function I (x) (x ∈R
d ) given by the Legendre–Fenchel’s transform

of ln �,

I (x)= sup
λ∈Rd

(λ ·x − ln �(λ)) . (7)
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The formulation of the theorem is not restricted to discrete random vari-
ables: this will be important for our applications.

A heuristic proof of the theorem for the simplest case Xk ∈R goes as
follows. The probability of obtaining SN = x, with dµ the common prob-
ability distribution of each variable Xk, is given by

P(SN ∈ [x, x +dx]) =
∫ N∏

k=1

dµ(Xk) δ(SN −x). (8)

This formula can also be interpreted as the volume of the phase-space
(X1, . . . ,XN) under the microcanonical constraint that SN = x. Using the
Laplace transform of the Dirac’s δ-function, one obtains

P(SN ∈ [x, x +dx])= 1
2πi

∫

�

dλ e−Nλx

∫ N∏

k=1

dµ(Xk) eλ
∑N

k=1 Xk , (9)

where � is a path on the complex λ-plane going from −i∞ to +i∞,
which crosses the real axis at a positive value. Subsequent manipulations
of this formula lead to

P(SN ∈ [x, x +dx]) = 1
2πi

∫

�

dλ e−Nλx
[
〈eλX〉

]N

= 1
2πi

∫

�

dλ e−N
(
λx−ln〈eλX〉) N→∞� e−NI (x), (10)

where I (x) is given in formula (7) with d = 1. In the last step, a large N

saddle-point approximation has been performed.
Most of the results contained in this paper will be obtained using

Cramér’s theorem, because the statistical variables of the models we will
consider are identically distributed in space (mostly on a lattice). In all
cases the function ln � is differentiable, which also fulfils the hypotheses
of the Gärtner–Ellis theorem.(17)

2. A GENERAL METHOD

In this Section, we will describe the use of the large deviation
method to solve models with long-range interactions. As already men-
tioned, Michel and Robert(18) successfully used large deviations techniques
to rigorously prove the applicability of statistical mechanics to two-dimen-
sional fluid mechanics, proposed earlier.(26,27) Ellis et al.(19) have devel-
oped and generalized this approach to solve two-dimensional geophysical
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systems with long-range interactions. Here, we will adopt Ellis et al.
approach, emphasizing the different steps in the construction of thermo-
dynamic functions. The method will be exemplified discussing in detail the
three-state Potts model with infinite range interactions. This simple exam-
ple has been recently used as a toy model to illustrate peculiar thermo-
dynamic properties of long-range systems.(28) The diluted three-state Potts
model with short-range interactions has also been studied in connection
with “small” systems thermodynamics by Gross.(29)

The Hamiltonian of the three-state Potts model is

HN =− J

2N

N∑

i,j=1

δSi ,Sj
. (11)

The 1/N prefactor is introduced in order to keep energy extensive.(30)

Each lattice site i is occupied by a spin variable Si , which assumes three
different states a, b, or c. A pair of spins gives a ferromagnetic contri-
bution −J (J > 0) to the total energy if they are in the same state, and
no contribution otherwise. It is important to stress that the energy sum is
extended over all pairs (i, j): the interaction is infinite range.

The solution method consists of three steps.

Step 1: Identifying global variables
Let �N be the phase-space of a N -particles system with Hamiltonian

HN : �N →R (12)

and ωN ∈�N be a specific microscopic configuration. The first step of the
method consists in associating to every microscopic configuration ωN , a
global (coarse-grained) variable, γ (ωN). Then, a new Hamiltonian H̃N can
be defined

HN(ωN)= H̃N (γ (ωN))+RN(ωN). (13)

If one can neglect RN(ωN) with respect to H̃N in the large N -limit, then
the Hamiltonian can be expressed only in terms of the global variables.
When considering the above defined infinite range Potts model, the appro-
priate global variable is

γ = (na, nb, nc), (14)
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where (na, nb, nc =1−na −nb) are the fractions of spins in the three differ-
ent states a, b, c. In this case, the Hamiltonian expressed in terms of the
global variable is

H̃N =−JN

2
(n2

a +n2
b +n2

c), (15)

and coincides with the original Hamiltonian HN even at finite N . In Sec-
tion 4, we will discuss the α-Ising model, for which RN does not vanish.

The global variable γ is of finite dimension in our example, but could
be of infinite dimension in other cases. For instance, γ could correspond
to a local mass density in a gravitational system, or a coarse-grained vor-
ticity density in two-dimensional turbulence.

Although this type on redefinition of the Hamiltonian might appear
to be possible in all cases, this is not true. For instance, in the case of
short-range interactions, even after defining a local density of a physical
quantity (e.g. magnetization), when performing the large N -limit, no gen-
eral argument exists to neglect RN . As a consequence, in such a case, the
local density (e.g. the local magnetization) is not the appropriate macro-
scopic variable. However, we will argue that such a procedure is, instead,
viable in general for systems with long-range interactions on a lattice.
Keeping the lattice spacing finite is important in order to regularize pos-
sible short distance singularities.

Step 2: Deriving an entropy functional for the global variables
Because the mean-field variables are not equiprobable, the number of

microscopic configurations leading to a given value of γ does depend on
γ itself. Then, one can define an entropy functional s(γ ),

s(γ )= lim
N→∞

1
N

ln 
N(γ )=−I (γ )+ ln N , (16)

where the Boltzmann constant has been set to unity, 
N(γ ) is the number
of microscopic configurations corresponding to a given value of γ , I (γ ) is
the rate function and N = ∫ dγ
N(γ ) is the total number of states. This
is where large deviation theory applies; not only in proving that such an
entropy functional exists, but also in providing a procedure to derive it
explicitly.

If, besides the dynamical variables which contribute to the global
ones, the Hamiltonian depends also on a number of variables nv which is
small with respect to N , it is easy to prove that these additional variables
contribute to the entropy for a negligible term, proportional to nv/N .
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For the infinite range Potts model, it is possible to derive the entropy
functional s(γ ) directly, using combinatorial arguments and the Stirling
approximation in the large N -limit. However, let us follow instead the pro-
cedure given by Cramér’s theorem as explained in Section 1.2. Expres-
sion (14) for γ , which is identified with x in Section 1.2, can be rewritten
as

γ =
(

1
N

∑

i

δSi ,a,
1
N

∑

i

δSi ,b,
1
N

∑

i

δSi ,c

)
. (17)

The local random variables with common probability distribution are
here

Xk = (δSk,a, δSk,b, δSk,c

)
. (18)

Hence, the generating function � is given by

�(λa, λb, λc) = 1
3

∑

S=a,b,c

(
eλaδS,a+λbδS,b+λcδS,c

)
(19)

= 1
3

(
eλa + eλb + eλc

)
. (20)

The large deviation functional is

I (γ )= sup
λa,λb,λc

(λana +λbnb +λcnc − ln �(λa, λb, λc)) . (21)

This variational problem can be solved exactly, giving λ� = ln n� with �=
a, b, c. Hence,

I (γ ) = na ln na +nb ln nb + (1−na −nb) ln(1−na −nb)+ ln 3. (22)

Thermodynamic entropy density is given by s(γ ) = −I (γ ) + ln N , where
the normalization factor is N = 3 for the Potts model example, which
recovers the result of the combinatorial approach.

Step 3: Microcanonical and canonical variational problems
To obtain the entropy as a function of energy density ε, i.e. to solve

a model in the microcanonical ensemble, after performing steps 1 and 2 of
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the solution method, one has to find the solution of the following varia-
tional problem(19)

S(ε)= sup
γ

(s(γ ) |H(γ )= ε) , (23)

where

H(γ )= lim
N→∞

H̃N(γ )

N
. (24)

This result is exact but it corresponds also to an “intuitive” mean-field
solution. Finally, let us notice that the total entropy density is intensive:
there is no difference in this respect with short-range interacting systems.
When other conserved quantities exist, they must be taken into account
when solving the variational problem in formula (23). Specific examples
will be discussed in Sections (3.1) and (3.2).

For the infinite range Potts model (11), the variational problem is

S(ε) = sup
na,nb

(
−na ln na −nb ln nb − (1−na −nb)

× ln(1−na −nb)

∣∣∣−J

2

(
n2

a +n2
b + (1−na −nb)

2
)

= ε
)
. (25)

This variational problem can be solved numerically. The microcanonical
inverse temperature β(ε)=dS/dε can then be derived: it is shown in Fig. 1
in the allowed energy range [−J/2,−J/6]. Ispolatov and Cohen(28) have
obtained the same result by determining the density of states. A negative
specific heat region appears in the energy range [−0.215J,−J/6].

Let us now consider the canonical ensemble. The partition function,
written in terms of the common probability distribution of the phase-
space variables, is

Z(β,N) =
∫ N∏

k=1

dµ(Xk) e−βHN (26)

where µ is the probability density of Xk. This is not the usual parti-
tion function, but differs from it only for a constant factor, which counts
the number of states. Let us remark that we have also used the letter β

for the microcanonical inverse temperature. We will comment specifically
when the microcanonical inverse temperature differs from the canonical
one due to ensemble inequivalence.
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Fig. 1. Caloric curve (inverse temperature versus energy density) of the three states infinite
range Potts model. The canonical solution is represented by a solid line. The microcanonical
solution coincides with the canonical one for ε � εt and is instead indicated by the dash-dot-
ted line for εt � ε < −J/6. The increasing part of the microcanonical dash-dotted line cor-
responds to a negative specific heat region. In the canonical ensemble, the model displays a
first order phase transition at βt . The two dotted regions bounded by the dashed line and by
the microcanonical dash-dotted line have the same area (Maxwell’s construction).

Approximating Hamiltonian HN in the large N -limit with the one
expressed in terms of the global variable γ , one gets

Z(β,N)
N→∞�

∫
dγ 
N(γ ) e−βH(γ )

∫
dγ 
N(γ )

. (27)

For infinite range models, formula (27) is exact for all N because the
rest RN vanishes. Using formula (16), one obtains

Z(β,N) �
∫

dγ e−N (−s(γ )+βH(γ )). (28)

Applying the saddle point method, the partition function is rewritten as

Z(β,N) � e−NF(β), (29)
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where the “free energy” F(β) is obtained solving the variational problem

F(β)= inf
γ

(βH(γ )− s(γ )) . (30)

Our “free energy” is the usual free energy multiplied by the inverse tem-
perature. This helps because physical states will correspond to minima of
such free energy also for negative inverse temperatures.

In the case of the infinite range three-state Potts model, the canoni-
cal free energy can be explicitly derived solving the following variational
problem

F(β) = inf
na,nb,nc

(
na ln na +nb ln nb +nc ln nc

−βJ

2

(
n2

a +n2
b +n2

c

)
|na +nb +nc =1

)
. (31)

To obtain the caloric curve, one has to compute ε = dF/dβ. Figure 1
shows that at the canonical transition inverse temperature βt � 2.75, cor-
responding to the energy εt/J � −0.255, a first order phase transition
appears, with an associated latent heat. The low energy “magnetized”
phase becomes unstable, while the high energy “homogeneous” phase,
which has the constant energy density, ε/J = −1/6, is stabilized. In Fig.
1, the two dotted regions have the same area, respecting Maxwell’s con-
struction. At the inverse transition temperature, there is also a jump in the
global variables (na, nb, nc) which are the order parameters of the model.

This extremely simple example shows already ensemble inequivalence.
In the microcanonical ensemble, there is no phase transition and the spe-
cific heat becomes negative. On the other hand, in the canonical ensemble,
there is a first order phase transition with a latent heat. The caloric curves
do not coincide. We observe that in the energy range of ensemble inequiv-
alence, microcanonical temperatures, (dS/dε)−1, do not coincide with any
canonical one.

This is an example of the more general fact that entropy s(ε) is not
always the Legendre–Fenchel transform of the free energy F(β). A gen-
eral discussion of ensemble inequivalence, both at the thermodynamic level
and at the level of equilibrium macrostates, is provided in refs. 19 and 21,
while a classification of phase transition and of ensemble inequivalence sit-
uations is reported in ref. 31.

This concludes the general presentation of the different steps of
the method to derive the statistical mechanics of long-range interacting
systems.



688 Barré et al.

3. EXAMPLES

In this section, we will discuss the application of the large devia-
tion method to two examples which share the difficulty of computing the
entropy for a phase-space with continuous variables. When presenting the
method, we have discussed in parallel its application to a model with dis-
crete variables, the infinite range three-state Potts model, which however
could have been solved by direct states counting.(28) This latter approach
cannot be used when the variables are continuous. Obtaining microcanon-
ical entropy often implies the solution of too complicated integrals, and
indeed one does not find many examples of such solutions in the litera-
ture. On the contrary, the large deviation method is not restricted to dis-
crete variables and we will show that it can even be simpler to use in such
a case.

3.1. The Hamiltonian Mean Field Model

The Hamiltonian Mean Field (HMF) model(22,23) is defined by the
following Hamiltonian

HN =
N∑

i=1

p2
i

2
+ C

2N

∑

i,j

cos(θi − θj ), (32)

where θi ∈ [0,2π [ is the position (angle) of the ith article on a circle and
pi the corresponding conjugate variable. This system can be seen as rep-
resenting particles moving on a unit circle interacting via an infinite range
attractive (C < 0) or repulsive (C > 0) cosine potential or, alternatively, as
classical XY-rotors with infinite range ferromagnetic (C < 0) or antiferro-
magnetic (C >0) couplings. The renormalization factor N of the potential
energy is kept not only for historical reasons, but also because it simpli-
fies the derivation of the variational problems and makes the problem well
defined. As we will see, this implies that the usual energy per particle and
temperature are well defined in the N → ∞ limit. In the literature, some
authors have treated the case in which energy is not extensive. This leads
to different thermodynamic limit behaviors.(32,33)

The canonical solution of this model has been derived using the
Hubbard–Stratonovich transformation.(23) The microcanonical solution
has been heuristically obtained, under the hypothesis of concave entropy
in ref. 34 and in a different form in ref. 35. In this section, we will derive
both solutions with no additional hypothesis. We will verify that the two
ensembles give equivalent predictions.
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Step 1: Hamiltonian (32) can be rewritten as

HN =
N∑

i=1

p2
i

2
+ NC

2
(M2

x +M2
y ), (33)

where the magnetization is

M =Mx + iMy = 1
N

∑

k

eiθk , with M =|M|. (34)

By a direct inspection of Hamiltonian (33), one can identify the global
quantities u= 1

N

∑
i p

2
i , Mx and My . Moreover, since v= 1

N

∑
i pi is a con-

served quantity with respect to the dynamics defined by Hamiltonian (32),
it will be included in the global variable. Hence,

γ = (u, v,Mx,My). (35)

The Hamiltonian in terms of the global variable is

H(γ )= 1
2
(u+CM2). (36)

Step 2: The vector of local variables is Xk = (p2
k , pk, cos θk, sin θk). The

generating function is

�(λu, λv, λc, λs) = 〈eλup
2 +λvp +λc cos θ +λs sin θ 〉 (37)

∼ e−λ2
v/4λu

√
π

−λu

I0

(√
λ2

c +λ2
s

)
, (38)

where I0 is the modified Bessel function of order 0. In the last expres-
sion, we have not reported the constant factor

∫
�

dp dθ which is finite
because the domain of integration � is bounded due to the finiteness of
the energy. The sign ∼ indicates that formula (38) is valid only at lead-
ing order; indeed, as � �=R × [0,2π [, neither the Gaussian nor the Bessel
functions are fully exact.
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The large deviation functional is then given, apart from trivial con-
stants, by

I (γ ) = sup
λu,λv,λc,λs

[
λuu+λvv +λcMx +λsMy

− ln I0

(√
λ2

c +λ2
s

)
+ λ2

v

4λu

+ 1
2

ln(−λu)

]
. (39)

This variational problem can be solved for the “kinetic” subspace (λu, λv)

separately from the “configurational” one (λc, λs). The entropy as a func-
tion of the global variable is then

s(γ )= skin(u, v)+ sconf (M), (40)

where

skin(u, v) = 1
2

ln (u−v2)+ const (41)

sconf (M) = − sup
λ

[λM − ln I0(λ)]=−λM + ln I0(λ), (42)

with λ =
√

λ2
c +λ2

s and λ the solution of the variational problem in (42).

Let us remark that Cauchy–Schwarz inequality implies that u � v2.

Step 3: It is therefore possible to derive the microcanonical variational
problem

S(ε, v)= sup
M,u

[
1
2

ln(u−v2)+ sconf (M)

∣∣∣∣
1
2
u+ C

2
M2 = ε, v = const

]
, (43)

and the canonical one

F(β) = inf
M,u,v

[
β

2

(
u+CM2

)
− 1

2
ln(u−v2)− sconf (M)

]
. (44)

We show here the solution of both variational problems in the case
v=0 and C =−1, for which a second order phase transition appears. Shift-
ing v to non-vanishing values does not produce anything new, whereas the
second order phase transition disappears for positive values of C.
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Solving the sup condition in Eq. (42) leads to the consistency equa-
tion M = I1(λ)/I0(λ)≡m(λ), which determines the optimal value of λ, λ=
m−1(M). Using the energy constraint, Eq. (43) can be rewritten as

S(ε)= sup
M∈[0,1[

[
s(M, ε)= 1

2
ln(2ε +M2)+ sconf (M)

]
. (45)

In order to determine the global maximum of S, let us note that in
Eq. (45) M takes values in the interval [0,1[. Moreover, an asymptotic

expansion shows that s(M, ε)
M→1∼ (1/2) ln(1 −M), which diverges to −∞

when M tends to 1. Thus, a global maximum of the continuous function s

with respect to M exists and is attained inside the interval [0,1[. To deter-
mine this maximum one has first to solve the extremal condition

M̄

2ε + M̄2
=−s′

conf (M̄)=m−1 (M̄
)
. (46)

The unique solution of this equation is M̄ = 0 for ε > 1/4, while a non-
vanishing magnetization solution bifurcates from it at ε =1/4, originating
the second order phase transition. One can indeed show that

s(M, ε)= ln(2ε)

2
+
(

1
4ε

−1
)

M2 +o
(
M4
)

, (47)

which clarifies the stability change at ε = 1/4 of the M̄ = 0 solution. For-
mula (47) was also obtained in ref. 36 in connection with the fluctuations
of the magnetization.

Let us remark that (dS)/(dε) is nothing but the inverse of twice the
kinetic energy, which is the usual microcanonical temperature. Moreover,
condition (46) coincides, as expected, with the consistency relation derived
in the canonical ensemble.(23) In Fig. 2, we show the full dependence of
the entropy on energy and the graph of the free energy versus the inverse
temperature, obtained by solving numerically the consistency equation (46)
in the low energy (temperature) range. In Fig. 3, we plot the caloric curve
and the dependence of the order parameter on energy: the two ensembles
give the same predictions because the entropy is concave.

In Appendix A, we discuss a different way of obtaining the microca-
nonical solution, which treats the kinetic part of the energy in a more tra-
ditional way, like, for instance, in gravitational dynamics.(37) The method
showed in this section is of more general applicability.
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(a) (b)

Fig. 2. Entropy versus energy (a) and free energy versus inverse temperature (b) for the
HMF model (33) with C =−1 and v = 0. The dotted lines are traced at the phase transition
point.

(a) (b)

Fig. 3. Inverse temperature versus energy (a) and magnetization versus energy (b) for the
HMF model (33) with C =−1 and v = 0. The dotted lines are traced at the phase transition
point.

3.2. The Colson–Bonifacio Model for the Free Electron Laser

In the linear Free Electron Laser (FEL), a relativistic electron beam
propagates through a spatially periodic magnetic field, interacting with
the co-propagating electromagnetic wave; lasing occurs when the electrons
bunch in a subluminar beat wave.(24) Scaling away the time dependence
of the phenomenon and introducing appropriate variables, it is possible to
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catch the essence of the asymptotic state by studying the classical Hamil-
tonian

HN =
N∑

j=1

p2
j

2
−NδA2 +2A

N∑

j=1

sin(θj −ϕ). (48)

The pi ’s represent the velocities relative to the center of mass of the N

electrons and the conjugated variables θi characterize their positions with
respect to the co-propagating wave. The complex electromagnetic field var-
iable, A = A eiϕ , defines the amplitude and the phase of the dominating
mode (A and A� are conjugate variables). δ is a parameter which mea-
sures the average deviation from the resonance condition. In addition to
the “energy” H , the total momentum P =∑j pj + NA2 is also a con-
served quantity. Most of the studies of this model have concentrated on
the numerical solution of Hamiltonian (48), starting from initial states
with a small field A and the electrons uniformly distributed with a small
kinetic energy. Then, the growth of the field has been observed and its
asymptotic value determined from the numerics. Our study below allows
to find the asymptotic value of the field analytically.

Step 1: Similarly to the HMF case, Hamiltonian (48) can be rewritten
as

HN �NH(γ ) = N
(u

2
− δA2 +2A

(−Mx sin ϕ +My cosϕ
))

(49)

where Mx , My , u and v have been defined in Eq. (34) and following.
Defining the phase of the mean field ϕ′ as Mx + iMy = M exp (iϕ′), the
global variable is γ = (u, v,M,ϕ′,A,ϕ).

Step 2: As remarked in step 2 of Section 2, the contribution to the
entropy of the two field variables A, ϕ, is negligible (of order 1/N ). Hence,
the � function reduces to the one of the HMF model, see formula (38).
Finally, one obtains the same contributions to the kinetic and configura-
tional entropies, as shown in formulas (41) and (42).

Step 3: Defining the total momentum density as σ =P/N , the micro-
canonical variational problem to be solved is

S(ε, σ, δ) = sup
γ

[
1
2

ln (u−v2)+ sconf (M)

∣∣∣∣ ε = u

2
+2AM sin

(
ϕ′ −ϕ

)

−δA2, σ =v +A2
]
. (50)
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Using the constraints of the variational problem, one can express u

and v as functions of the other variables, obtaining the following form of
the entropy

S(ε, σ, δ) = sup
A,ϕ,M,ϕ′

[
1
2

ln

[
2

(
ε − σ 2

2

)
−4AM sin

(
ϕ′ −ϕ

)

+2(δ −σ)A2 −A4

]
+ sconf (M)

]
. (51)

The extremization over the variables ϕ and ϕ′ is straightforward, since by
direct inspection of formula (51), it is clear that the entropy is maximized
when ϕ′ −ϕ =−π/2. Then

S(ε, σ, δ) = sup
A,M

[
1
2

ln

[
2

(
ε − σ 2

2

)
+4AM +2(δ −σ)A2 −A4

]

+ sconf (M)

]
≡ sup

A,M

s(A,M). (52)

The non-zero σ case can be reduced to the vanishing σ problem using
the identity S(ε, σ, δ)=S(ε −σ 2/2,0, δ −σ). From now on we will discuss
only the zero momentum case, changing ε+σ 2/2→ε and δ +σ → δ. This
has also a practical interest, because it is the experimentally relevant initial
condition.(38)

The conditions for having a local stationary point are

∂s

∂A
= 2

(
δA−A3 +M

)

2ε +2δA2 +4AM −A4
=0, (53)

∂s

∂M
= 2A

2ε +2δA2 +4AM −A4
−m−1(M)=0, (54)

where m−1 is defined in formula (46). It is clear that M =A=0 is a solu-
tion of conditions (53) and (54): it exists only for positive ε. We will limit
ourselves to study its stability. It must be remarked that this is the typi-
cal initial condition studied experimentally in the FEL: it corresponds to
having a beat wave with zero amplitude and the electrons uniformly dis-
tributed. The lasing phenomenon is revealed by an exponential growth of
both A and the electron bunching parameter M.

The second order derivatives of the entropy s(A,M), computed on
this solution, are
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∂2s

∂A2
(0,0) = δ

e
,

∂2s

∂m2
(0,0)=−2,

∂2s

∂A∂m
(0,0)= 1

ε
. (55)

The two eigenvalues of the Hessian are the solutions of the equation

x2 −x

(
−2+ δ

ε

)
− 2δ

ε
− 1

ε2
=0. (56)

The stationary point is a maximum if the roots of this equation are both
negative. This implies that their sum S = (−2 + δ/ε) is negative and their
product P =−2δ/ε −1/ε2 is positive. Recalling that we restrict to positive
ε values, the condition for the sum to be negative is ε >δ/2 and the one
for the product to be positive is ε>−1/(2δ) with δ<0. The second condi-
tion is more restrictive, hence the only region where the solution M =A=0
exists and is stable is ε >−1/(2δ) with δ < 0. When crossing the line ε =
−1/(2δ) (δ < 0), a non-zero bunching solution (M �= 0) originates continu-
ously from the zero bunching one, producing a second order phase transi-
tion. This analysis fully coincides with the one performed in the canonical
ensemble in ref. 39.

The maximum entropy solution in the region complementary to the
one where the zero bunching solution is stable can be obtained(38) by solv-
ing numerically Eqs. (53) and (54). This corresponds to having a non-zero
field intensity and bunching.

We have not completed in this case the study of the global stability
of the different solutions, but we think that, in view of the possibility to
map this model exactly onto the HMF model (see Appendix B), no sur-
prise is expected and that the study presented here should fully represent
all physical solutions.

4. THE ISING MODEL WITH 1/rα INTERACTIONS

All the models that have been considered above are infinite range:
interactions are independent of the distance and the energy can therefore
be written exactly in terms of global variables. This is no more valid for
several important and physically relevant cases. Let us mention in particu-
lar the 1/r interaction law for gravity and Coulomb systems and the log-
arithmic interaction for two-dimensional turbulence. A generalized 1/rα

interaction has been also introduced and the resulting phase transitions
have been analyzed.(40) In all these cases the interaction is singular at
short range. Interesting toy models (which generalize the HMF model)
without a short distance singularity have been recently proposed.(41–44) In
these latter models, XY spins are put on a lattice and interact through
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a slowly decreasing non-integrable 1/rα law (α < d). For what concerns
studies in the microcanonical ensemble, is has been shown(42) that the
thermodynamic behavior of these models is independent of the α expo-
nent, after one has adopted an appropriate renormalization of energy and
temperature. Salazar et al.(45) have studied numerically the problem using
microcanonical Monte-Carlo simulations. Besides confirming the scaling
properties with α, they have also shown that the number of states is
of order exp(N). The exact solution of these models in the canonical
ensemble has been obtained by Campa et al.(43) and Vollmayr-Lee and
Luijten.(44) The scaling of the magnetization and of the energy curve with
the α exponent has been exhibited in full detail.

In this section, we will present a microcanonical solution of the one-
dimensional α-Ising model, whose Hamiltonian is given by

HN = J

N1−α

N∑

i>j=1

1−SiSj

|i − j |α , (57)

where J >0 and spins Si =±1 sit on a one-dimensional lattice with unitary
spacing. The Nα−1 prefactor is introduced in order to have an extensive
energy. This model has been first introduced by Dyson(25) and studied for
the “integrable” case, α > 1, in the canonical ensemble without the Nα−1

prefactor. We will show that it is possible to obtain an exact microcanon-
ical solution using large deviation theory, when 0 � α < 1. This solution
can be easily generalized to lattices of larger dimension. In a preliminary
paper,(46) a microcanonical solution of this model was presented without
rigorously proving the exactness of the mean-field limit.

The study of this model will also give us the opportunity to empha-
size the important role played by boundary conditions when the inter-
actions are long range. We will indeed consider both free and periodic
boundary conditions. In the latter case, |i − j | is the minimal distance
along the circle where one identifies the first and the (N + 1)th lattice
point.

In the solution we will adopt the same scheme described in Section 2.

Step 1: The Hamiltonian HN cannot be rewritten exactly using a
finite dimensional global variable. We overcome this difficulty by defining
a coarse-grained function. Let us divide the lattice in K boxes, each with
n=N/K sites, and let us introduce the average magnetization in each box
mk, k = 1, . . . ,K. In the limit N → ∞, K → ∞, K/N → 0, the magneti-
zation becomes a continuous function m(x), of the [0,1] interval. After
a long but straightforward calculation, described in Appendix C, we can
show that it is possible to express HN as a functional of m(x):
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HN =NH [m(x)]+o(N), (58)

where

H [m(x)]= J

2

∫ 1

0
dx

∫ 1

0
dy

1−m(x)m(y)

|x −y|α . (59)

The estimation is uniform on all configurations.

Step 2: The probability to get a given magnetization mk in the kth
box from all a priori equiprobable microscopic configurations obeys a
local large deviation principle P(mk)∝ exp[ns(mk)], with

s(mk)=−1+mk

2
ln

1+mk

2
− 1−mk

2
ln

1−mk

2
. (60)

Since the microscopic random variables in the different boxes are indepen-
dent and no global constraints has yet been imposed, the probability of
the full global variable (m1, . . . ,mK) can be expressed in a factorized form
as

P(m1,m2, . . . ,mK) =
K∏

i=1

P(mi)�
K∏

i=1

ens(mi)

= exp

[
nK

K∑

i=1

s(mi)

K

]
� eNS[m(x)], (61)

where S[m(x)] = ∫ 1
0 s(m(x)) dx is the entropy functional associated to the

global variable m(x). Large deviation techniques rigorously justify these
calculations,(47) proving that entropy is proportional to N , also in the pres-
ence of long-range interactions. This result is independent of the specific
model considered; it applies, for instance, also to the long-range XY spin
model studied by Salazar et al.(45)

Step 3: It is now straightforward to formulate the variational problem
in the microcanonical ensemble

S(ε)= sup
m(x)

(S[m(x)] |ε =H [m(x)] ) . (62)

Let us remark that the optimization problem (62) has to be solved
in a functional space. In general, this has to be done numerically, tak-
ing into account boundary conditions. In this paper, we consider only free
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Fig. 4. Equilibrium magnetization profile for the α-Ising model with free boundary condi-
tions at an energy density ε = 0.1 for α = 0.2 (solid line), α = 0.5 (dotted line) and α = 0.8
(dashed line).

and periodic boundary conditions. In the former case, the only available
solutions are numerical. An example of a maximal entropy magnetization
profile obtained for free boundary conditions is shown in Fig. 4 for differ-
ent values of α. In the following of this section, we will treat the periodic
boundary conditions case, for which analytical result can be obtained.

In the periodic boundary case, the distance |x −y| in the energy (57)
is defined as the minimal one on the circle, obtained when the two bound-
aries of the interval [0,1] are identified. Both entropy and free energy can
be obtained in analytical form for homogeneous magnetization profiles.

In Appendix D, we prove that for β < βc = (1 − α)/(J2α) there is a
unique global maximum of S, corresponding to a constant zero magneti-
zation profile. The variational problem (62), where S is defined in Eq. (60),
leads to the equation

tanh−1 (m(x))=β J

∫ 1

0

m(y)

|x −y|α dy, (63)

where β is a Lagrange multiplier. For β > βc, we restrict ourselves to
solutions with constant magnetization profiles, i.e. m(x)=m. We prove in
Appendix D that these solutions are locally stable, i.e. close non-constant
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(a) (b)

Fig. 5. (a) Equilibrium magnetization in the allowed energy range in the microcanonical
ensemble for the α-Ising model with α =0.5; the negative branch is also reported with a dot-
ted line. (b) Inverse temperature versus energy in the microcanonical ensemble (solid line).
The canonical ensemble result superposes to the microcanonical one in the interval [βc,∞]
and is represented by a dashed line for β ∈ [0, βc]. βc is then the inverse critical temperature
in the canonical ensemble. In the microcanonical ensemble, no phase transition is present.

profiles have a smaller entropy. Moreover, these are the only solutions
when α = 0, since the right-hand-side of Eq. (63) is then independent of
x. For constant profiles, the relation between energy and magnetization is

ε = εmax

(
1−m2

)
, (64)

where we have used
∫ 1

0 dx|x −y|−α =2α/(1−α) and εmax =1/(2βc). Hence,
fixing the energy implies fixing the magnetization and, consequently, the
Lagrange multiplier β in Eq. (63). Expressing the magnetization in terms
of the energy in the entropy formula (60) allows to derive the caloric curve
β =dS/dε. The consistency equation (63) has always a non-vanishing mag-
netization solution in the whole energy range [0, εmax]: this is reported
in Fig. 5(a). The caloric curve is shown in Fig. 5(b) with full line. The
limit temperature βc is attained at zero magnetization, which is a bound-
ary point.

In the canonical ensemble, one has to solve the variational problem
(30). This leads to exactly the same consistency equation (63), where the
Lagrange multiplier is replaced by the inverse temperature β. Solving this
consistency equation on the full positive β axis, one finds a zero magneti-
zation for β < βc and non-vanishing one for β > βc. The caloric curve is
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obtained taking the derivative ε = dF/dβ. The graph of this function is
reported in Fig. 5(b) and superposes to the microcanonical caloric curve
from infinity down to βc while it is represented by the dashed line for
β <βc.

It follows that in the region [0, βc], the two ensembles are not equiv-
alent. In this case, a single microcanonical state at εmax corresponds to
many canonical states with canonical inverse temperatures in the range
[0, βc[. Thus, in such a case, the canonical inverse temperature is not equal
to the microcanonical one. In the microcanonical ensemble, the full high
temperature region is absent and, therefore, no phase transition is present
or, in other terms, the phase transition is at the boundary of the accessi-
ble energy values. The entropy is always concave, hence no inequivalence
can be present in the allowed energy range, apart from the boundaries.
This situation is called partial equivalence.(19,48) This ensemble inequiva-
lence persists for all α values below one, and is removed only for α = 1
when εmax → ∞ and βc → 0: the phase transition is not present in both
ensembles and the system is always in its magnetized phase.

The main drawback of this analysis is the difficulty to obtain analyti-
cal solutions of Eq. (63) for non-constant magnetization profiles, which is
the typical situation when boundary conditions are not periodic. However,
we have shown that, for periodic boundary conditions, constant magneti-
zation profiles are locally stable (see Appendix D), but the proof of non-
existence of generic magnetization profiles with larger entropy, and hence
the global stability analysis, remains to be done.

An advantage of the method we have exposed is its flexibility and
applicability to more complex models. For instance, some results of the
kind presented here have been already obtained for the α-Blume–Emery–
Griffiths model.(9,20)

It is also interesting to check how fast one reaches the N →∞ solu-
tion as one increases the number of spins N . Figure 6 shows entropy den-
sity as a function of energy density for the α-Ising model with α=0.8 and
periodic boundary conditions. The figure emphasizes that the asymptotic
result is already accurate enough for N =100.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have discussed examples of the application of large
deviation techniques to the study of the statistical mechanics of infi-
nite range models, at equilibrium, in the microcanonical and canonical
ensembles. Besides that, we have shown how to construct a mean-field
Hamiltonian for the Ising model in one dimension with 1/rα interaction
(0 � α < 1). The solution of simple toy models already shows interesting
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Fig. 6. Entropy density versus energy density for the α-Ising model but with periodic
boundary conditions and with α = 0.8. The solid curve represents the theoretical solu-
tion, whereas the dashed and dotted lines are determined by microcanonical Monte-Carlo
simulations with N =34 and N =100, respectively (data provided by R. Salazar).

ensemble inequivalence features, like negative specific heat. Among these
simple models, one should point out those with continuous state variables,
because the Hamiltonian dynamics becomes accessible and one can then
study also non-equilibrium features. Remarkable is also the solution of the
Colson–Bonifacio model, which is believed to capture the phenomenology
of the saturated state of the free-electron laser.

It is important to emphasize that the method proposed in this paper
does not apply to all long-range interacting systems. In particular, those
for which statistical mechanics cannot be reduced to a mean-field var-
iational problem are excluded. As presented in Section 2, the method
is strongly dependent on the possibility to introduce global or coarse-
grained variables: examples are the averaged magnetization, the total
kinetic energy, etc. The coarse-grained variables allow one to describe
structures whose size is of the order of the total size of the system;
however, they may be insufficient to characterize the effect of short-
range interaction. A typical example is the Ising model with attractive
short-range interactions and repulsive long-range couplings studied by
Grousson et al.(49) The creation of large scale structures needs an infinite
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energy, because of the repulsive long-range component. However, the com-
petition between repulsion and attraction can lead to interesting struc-
tures, such as alternating positive and negative magnetized stripes. Indeed,
despite the long-range character of the interaction, this system is additive
and these structures are therefore compatible with the predicted zero mag-
netization at large scale. Still in the context of canonical ensemble, worth
quoting are the results of Kardar(50) who, analyzing an Ising model with
both short-range and long-range interactions was able to derive the exact
free energy by a minimization procedure. Obtaining similar results for the
microcanonical entropy would be extremely important.

The application of the techniques described in this paper to more
realistic N -body systems is an important issue. The extension to wave-
particle interactions(6) should not be too difficult. The mean-field descrip-
tion of the two-dimensional point vortices model(51) has been rigorously
obtained in a series of papers.(13,52,53) On the contrary, due to the strong
short-distance singularity, similar results for self-gravitating systems(2,54)

have not been obtained and are a challenging current issue. What is usu-
ally done is: (i) in equilibrium, to conjecture the validity of the mean-
field description; (ii) out-of-equilibrium, to consider the Vlasov–Poisson
equation as a good approximation of the short time dynamics. Once the
mean-field description is introduced at finite time (Euler equation, Vla-
sov–Poisson equation), the statistical mechanics can be derived using large
deviation techniques.(18,19) However, it is not equivalent to the original
statistical mechanics of the N -body system. Examples of this inequiva-
lence, due to the exchange of the two limits t →∞ and N →∞, are given
in refs. 8 and 38 for the HMF and the Colson–Bonifacio model.

APPENDIX A. ALTERNATIVE DERIVATION OF THE

MICROCANONICAL SOLUTION OF THE HMF MODEL

The microcanonical solution of the HMF model (32) can be alter-
natively obtained using the traditional method applied for self-gravitating
systems.(37) Denoting by K and V kinetic and potential energy, respec-
tively, the number of microscopic configurations corresponding to the
energy E is given by


N(E)=
∫ ∏

i

dpidθi δ(E −HN) (A.1)
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=
∫ ∏

i

dpidθi

∫
dK δ

(
K −

∑

i

p2
i

2

)

︸ ︷︷ ︸
=1

δ (E −K −V ({θi}))

(A.2)

=
∫

dK

∫∏

i

dpi, δ

(
K −

∑

i

p2
i

2

)

︸ ︷︷ ︸

kin(K)

∫ ∏

i

dθiδ (E −K −V ({θi}))
︸ ︷︷ ︸


conf (E−K)

.

(A.3)
The factor 
kin is classical and corresponds to the volume of the hyper-
sphere with radius R = √

2K in N dimensions: its expression is 
kin =
2πN/2/�(1+N/2). Using the asymptotic expression of the �-function,
ln �(N)�N ln N −N , one obtains


kin (K)
N→+∞∼ exp

(
N

2

[
1+ ln π − ln

N

2
+ ln(2K)

])
(A.4)

= exp
(

N

2
[1+ ln(2π)+ ln u]

)
, (A.5)

where u = 2K/N . Defining the configurational entropy per particle
sconf (Ṽ ) = (ln 
conf (NṼ ))/N , where Ṽ = (E − K)/N , Eq. (A.3) can be
rewritten as


N(εN)
N→+∞∼ N

2

∫
du exp

[
N

(
1
2

+ ln(2π)

2
+ 1

2
ln u+ sconf (Ṽ )

)]
.

(A.6)

Hence, solving the integral in the saddle point approximation, gives the
entropy modulo a trivial constant

S(ε) = lim
N→+∞

1
N

ln 
N(εN) (A.7)

= 1
2

sup
u

[
1
2

ln u+ sconf (Ṽ )

]
(A.8)

to which Eq. (43) reduces once the sup on M is performed. Indeed, this
expression of the entropy assumes the knowledge of the configurational
entropy sconf , which is determined by solving the extremal condition in
Eq. (42), and is restricted to total vanishing momentum v =0. Hence, the
method given in the text is slightly more general.
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APPENDIX B. MAPPING THE FEL MODEL ONTO HMF

The microcanonical solution of the FEL model (see Eq. (48)) can be
expressed in terms of the HMF Hamiltonian using the Laplace representa-
tion of the Dirac δ-function and a Gaussian integration. After performing
the change of variables θ̃i = θi −ϕ, the microcanonical volume of the FEL
is given by


(E) =
∫ ∫ ∫ ∏

i

dpidθ̃idAδ(E −HN) (B.1)

=
∫ ∫ ∫ ∏

i

dpidθ̃idA
1

2iπ

∫

�

dλ eλ(E−HN), (B.2)

where � is a path on the complex λ-plane, going from −i∞ to +i∞,
which crosses the real axis at a positive value.

Introducing the FEL Hamiltonian


(E) =
∫ ∏

i

dpi e
λ

(
E−∑N

j=1

p2
j
2

)
∫ ∫ ∏

i

dθ̃idA

× 1
2iπ

∫

�

dλ eλ(NδA2−2NAM̃y), (B.3)

and performing the Gaussian integral over the field variable A, one gets


(E) =
∫ ∏

i

dpi

∫ ∏

i

dθ̃i

1
2iπ

×
∫

�

dλ e
λ

(
E−∑N

j=1

p2
j
2 −N

M̃2
y

δ
− 1

2 ln[λN(−δ)]

)
√

π

2
(B.4)

=
∫ ∏

i

dpi

∫ ∏

i

dθ̃iδ



E −
N∑

j=1

p2
j

2
−N

M̃2
y

δ
− 1

2
ln [λN(−δ)]




√

π

2
.

(B.5)

In the large N -limit, one can neglect all constants and the ln N term in
the argument of the Dirac δ, obtaining the microcanonical volume for the
Hamiltonian

HN =
N∑

j=1

p2
j

2
+N

M̃2
y

δ
. (B.6)
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Hence, for negative values of the parameter δ, solving the microcanonical
problem for the FEL Hamiltonian (48) is formally equivalent to obtaining
the solution of the HMF Hamiltonian (33) with C =2/δ and Mx =0.

APPENDIX C. DERIVATION OF FORMULA (58) FOR THE α-ISING

MODEL

Denoting by �N ={−1,1}N the phase space of the α-Ising model, its
Hamiltonian is defined as a function of �N to R

HN :�N →R (C.1)

ωN �→ J
∑

i>j

1−SiSj

|i−j |α , (C.2)

where ωN = (S1, . . . , SN) is a given microscopic configuration.
The coarse-graining operator YN,K divides the lattice into K boxes of

size n=N/K and defines a locally averaged magnetization mk in the kth
box Bk. The coarse-grained magnetization is then a step function, which
takes a constant value

mk = 1
n

∑

i∈Bk

Si, (C.3)

in Bk. It is convenient to introduce the operator

YN,K : �N →L2([0,1]), (C.4)

which maps the configuration space to the coarse-grained magnetization.
The length of the lattice is then renormalized to the interval [0,1] and, in
the limit N →∞, this operator defines a continuous magnetization profile
m(x). The limit of the number of boxes K → ∞ is taken in such a way
that the number of sites per box diverges N/K →∞, as already mentioned
in the text. In the following, we will use free boundary conditions (The
choice of periodic boundary conditions would change only some details of
the calculation).

The energy as a function of the coarse-grained magnetization is
defined as

h̃[YN,K(ωN)]=
K∑

k,l=1

J

2
(1−mkml) dkl, (C.5)
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where

dkl =
∫ k/K

(k−1)/K

∫ l/K

(l−1)/K

dx dy
1

|x −y|α . (C.6)

Hence, the composition of the operator YN,K with the functional h̃ allows
to define a map, which associates to each microscopic configuration ωN ∈
�N a given energy. Our aim is to find a series K(N) such that

lim
N→∞

sup
ωN∈�N

∣∣∣∣
HN(ωN)

N2−α
− h̃[YN,K(N)(ωN)]

∣∣∣∣=0. (C.7)

This is what we mean by uniform convergence of the Hamiltonian
HN(ωN) to its functional form H [m(x)], defined in formula (59).

The proof relies on the long-range character of the interaction (0 �
α <1). It is straightforward but lengthy.

Let us first express h̃[YN,K(N)(ωN)] directly as a function of the spin
variables Si

h̃[YN,K(N)(ω)]=
K∑

k,l=1

dkl

n2

∑

i∈Bk
j∈Bl

J

2
(1−SiSj ). (C.8)

In order to compare expression (C.8) with HN/N2−α, let us first intro-
duce the reduced Hamiltonian

gN,K = 1
N2−α

K∑

k,l=1
l �=k

∑

i∈Bk
j∈Bl

J

2
(1−SiSj )

|nk −nl|α , (C.9)

which is in fact the original Hamiltonian HN/N2−α where the distance
between two sites is approximated by the distance among the boxes to
which they belong. Using the triangular inequality, one gets

∣∣∣∣
HN(ωN)

N2−α
− h̃[YN,K(N)(ωN)]

∣∣∣∣ �
∣∣∣∣
HN(ωN)

N2−α
−gN,K

∣∣∣∣

+ ∣∣gN,K − h̃[YN,K(N)(ωN)]
∣∣≡A+B. (C.10)

We will show how both A and B can be bounded from above by quanti-
ties which vanish when N →∞, under the hypothesis that 0 � α <1.
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C.1. Upper Bound of A

Let us first rewrite HN/N2−α as a sum of two terms: the first contains
contributions from sites which belong to different boxes, the second from
those which are in the same box,

HN

N2−α
= 1

N2−α

K∑

k,l=1
l �=k

∑

i∈Bk
j∈Bl

J

2
(1−SiSj )

|i − j |α + 1
N2−α

K∑

k=1

∑

i,j∈Bk

J

2
(1−SiSj )

|i − j |α .

(C.11)

Then

A � 1
N2−α

∣∣∣∣∣∣∣∣

K∑

k,l=1
l �=k

∑

i∈Bk
j∈Bl

J

2
(1−SiSj )

(
1

|i − j |α − 1
|nk −nl|α

)
∣∣∣∣∣∣∣∣

+
∣∣∣∣∣∣

1
N2−α

K∑

k=1

∑

i,j∈Bk

J

2
(1−SiSj )

|i − j |α

∣∣∣∣∣∣
≡A1 +A2. (C.12)

The bound of A2 is easy to find since J (1−SiSj )/2 � J and |i − j |α � 1
for α ∈ [0,1]. One obtains

A2 � J
Kn2

N2−α
=J

Nα

K
. (C.13)

This quantity vanishes in the large N limit if K diverges faster than Nα

(and certainly slower than N ). This is the first point where the long-range
nature of the interaction is used.

In order to bound A1 let us divide the first sum in formula (C.12) into
three parts : k − l > 1, k − l <−1 and |k − l|= 1. The last part, |k − l|= 1,
can be bounded from above by 2JNα/K, which vanishes in the large N

limit. The two remaining parts are symmetric, hence we treat only the case
k− l >1. Since i ∈Bk and j ∈Bl , this implies that n(k− l −1)<i −j <n(k−
l +1). Hence,

1
nα

1
(k − l +1)α

<
1

|i − j |α <
1
nα

1
(k − l −1)α

. (C.14)
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Substracting 1/|nk −nl|α, one gets

1
nα

(
1

(k − l +1)α
− 1

(k − l)α

)
<

1
|i − j |α − 1

nα(k − l)α

<
1
nα

(
1

(k − l −1)α
− 1

(k − l)α

)
. (C.15)

This leads to

∣∣∣∣
1

|i − j |α − 1
nα(k − l)α

∣∣∣∣<
1
nα

(
1

(k − l −1)α
− 1

(k − l)α

)
. (C.16)

Thus

1
N2−α

K∑

k,l=1
k−l>1

∑

i∈Bk
j∈Bl

∣∣∣∣
1

|i − j |α − 1
nα(k − l)α

∣∣∣∣

<
1

N2−α

n2

nα
×

K∑

k,l=1
k−l>1

[
1

(k − l −1)α
− 1

(k − l)α

]
(C.17)

= n2−α

N2−α

K∑

k=3

k−2∑

l=1

[
1

(k − l −1)α
− 1

(k − l)α

]
(C.18)

= 1
K2−α

K∑

k=3

[
1− 1

(k −1)α

]
<

K

K2−α
. (C.19)

Hence, this part of A1 is bounded by JKα−1, which vanishes in the large
N limit. The symmetric part of A1k − l <−1 can be treated exactly in the
same way.

C.2. Upper Bound of B

Dividing the sum in two parts, one for sites in different boxes and the
other for sites in the same box, and using the triangular inequality, one
gets
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B � 1
N2−α

∣∣∣∣∣∣∣∣

N∑

k,l=1
l �=k

∑

i∈Bk
j∈Bl

J

2
(1−SiSj )

(
1

|nk −nl|α − dkl

n2

)
∣∣∣∣∣∣∣∣

+
∣∣∣∣∣∣

∑

k

dkk

n2

∑

i,j∈Bk

J

2
(1−SiSj )

∣∣∣∣∣∣
≡B1 +B2. (C.20)

In order to estimate the size of B2, one has first to evaluate
∑

k dkk.
Indeed,

dkl =
∫ 1/K

0

∫ 1/K

0
dx dy

1

|x −y + k−l
K

|α

= 1
K2−α

∫ 1

0

∫ 1

0
dudv

1
|u−v +k − l|α . (C.21)

Therefore
∑

k dkk ∼Kα−1. Hence, B2 � JKα−1, which vanishes in the large
N -limit.

For what B1 is concerned, exchanging the modulus with the sums and
using the expression for dkl (formula (C.21)), one obtains

B1 � J

N∑

k,l=1
l �=k

∣∣∣∣∣
n2

N2−αnα|k − l|α −dkl

∣∣∣∣∣

� J

N∑

k,l=1
l �=k

1
K2−α

∣∣∣∣∣

∫ 1

0

∫ 1

0
dudv

1
|u−v +k − l|α − 1

|k − l|α
∣∣∣∣∣ .

(C.22)

Similarly as for A1, one divides the sum in three parts k − l >1, k − l <−1
and |k − l|=1. The last part gives a term of order JKα−1, which vanishes
in the large N limit. If k − l >1, analogously to Eq. (C.15), one obtains
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1
(k − l +1)α

− 1
(k − l)α

<

∫ 1

0

∫ 1

0
dudv

1
|u−v +k − l|α − 1

|k − l|α

<
1

(k − l −1)α
− 1

(k − l)α
, (C.23)

which leads to
∣∣∣∣∣

∫ 1

0

∫ 1

0
dudv

1
|u−v +k − l|α − 1

|k − l|α
∣∣∣∣∣<

1
(k − l −1)α

− 1
(k − l)α

.

(C.24)

Summing this term over k and l gives again a factor of order K. Then,
this part is also bounded from above by a factor JKα−1. The symmetric
part k − l <1 is equally treated.

All terms in B are bounded by JKα−1, and therefore vanish in the
large N limit. This concludes the proof of formula (C.7) and assures that
h̃ converges to H .

We would like to emphasize that throughout of this derivation, the
only place where we use the Ising interaction of the model is where we
bound J (1 − SiSj )/2 by J . It is then easy to realize that the method
can be generalized to other models like Potts, Blume–Emery–Griffiths, XY,
with spatially decaying interactions. On the contrary, the presence of the
lattice is crucial, because it avoids microscopic configurations where the
state variables concentrate on single point, leading to a divergence.

APPENDIX D. PROOF OF STABILITY OF CONSTANT

MAGNETIZATION PROFILES FOR THE α-ISING

MODEL WITH PERIODIC BOUNDARY CONDITIONS

We prove here the stability of constant magnetization profiles for the
α-Ising model in the context of the canonical ensemble. This also implies
stability in the microcanonical ensemble. Let us consider the free energy
F [m(x)] as a functional of m(x)

F [m(x)]=−S[m(x)]+βH [m(x)], (D.1)

where the entropy functional S[m(x)] is defined in formula (61). We will
limit ourselves to periodic boundary conditions. Let us study the second
variation of F

δ2F(m(x))=−
∫ 1

0
dx s′′[m(x)] δm(x)2 −β

J

2

∫ 1

0
dx

∫ 1

0
dy

δm(x)δm(y)

|x −y|α ,

(D.2)



Large Deviation Techniques 711

where s′′ is the second derivative of s. Let us express the variation δm(x)

in Fourier components

δm(x)=
+∞∑

k=−∞
δmke2iπkx, (D.3)

and define

cα
k =
∫ 1

0
dx

e2iπkx

|x −y|α =2
∫ 1/2

0
dx

cos(2πkx)

|x|α , (D.4)

where, since we consider periodic boundary conditions, | · | denotes the dis-
tance on the circle. Using the inequality s′′(m(x)) � s′′(0) and replacing
the Fourier expansion (D.3) in Eq. (D.2), we obtain

δ2F(m(x)) �
+∞∑

k=−∞

(
−s′′(0)−β

J

2
cα
k

)
δm2

k. (D.5)

Remarking that all coefficients cα
k are positive reals and that for all k,

cα
k � cα

0 =2α/(1−α), one can bound from above all the coefficients in the
Fourier sum (D.5) by (−s′′(0)−βJcα

0 /2).
Thus for β < −2s′′(0)/(J cα

0 ) = βc, one has δ2F(m(x)) > 0. In such a
case, the free energy is strictly convex, and hence its minimum is unique.
This proves the global stability of the state m(x)=0.

For β > βc, we do not study global stability. Let us however show
the local stability of the uniform magnetization state m(x)=m. Using Eq.
(D.2), one has

δ2F(m(x)) �
+∞∑

k=−∞

(
−s′′(m)−β

J

2
cα
k

)
δm2

k. (D.6)

Using again the property cα
k � cα

0 , we note that all the Fourier coefficients
of Eq. (D.6) are bounded from above by −s′′(m)−βJcα

0 /2. Observing that
this latter expression is the second variation of the free energy for uni-
form magnetization profiles, i.e. (1−m2(β))−1 −β/βc, the analysis of Sec-
tion 4 implies that this quantity is non negative both for m �=0 and β >βc

and for m= 0 and β � βc. This proves that close to a constant magneti-
zation profile, there is no non-uniform magnetization profile which gives a
smaller free energy functional F [m(x)].
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